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1. Introduction

In this paper we study the (alternating) γ-positivity of several polynomials associated 
with the Narayana and Eulerian polynomials. In particular, we provide combinatorial 
interpretations for three identities related to the Narayana numbers of type B. More-
over, we show the alternating γ-positivity and Hurwitz stability of the polynomials 
N(Bn, x2) + (n + 1)xN(An−1, x2), where N(An−1, x) and N(Bn, x) are the Narayana 
polynomials of types A and B, respectively.

In subsection 1.1, we collect the definitions, notation and preliminary results. In sub-
section 1.2, we outline the motivations and the organization of this paper.

1.1. Notation and preliminaries

Let f(x) =
∑n

i=0 fix
i ∈ R[x]. If f0 � f1 � · · · � fk � fk+1 � · · · � fn for some k, 

then f(x) is said to be unimodal, where the index k is called the mode of f(x). If f(x)
is symmetric with the centre of symmetry �n/2�, i.e., fi = fn−i for all 0 � i � n, then 
it can be expanded as

f(x) =
�n/2�∑
k=0

γkx
k(1 + x)n−2k.

Following Gal [17], the polynomial f(x) is γ-positive if γk � 0 for all 0 � k � �n/2�, 
and the sequence {γk}�n/2�k=0 is called the γ-vector of f(x). Clearly, γ-positivity implies 
symmetry and unimodality. The reader is referred to [1,7,25,27,29,35,38] for some recent 
progress on this subject.

The polynomial f(x) is said to be alternatingly γ-positive if the γ-vector of f(x)
alternates in sign. For example, (1 + x2)n is alternatingly γ-positive, since

(1 + x2)n = [(1 + x)2 − 2x]n =
n∑(

n

k

)
2k(−x)k(1 + x)2n−2k,
k=0
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where the coefficients 
(
n
k

)
2k count k-simplices in the n-cube (see [36, A013609]). There 

has been considerable recent interest in the study of alternatingly γ-positive polynomials, 
see [6,21,24,34] for instance. In particular, Lin et al. [21] studied the alternating γ-
positivity of alternating Eulerian polynomials. Let us now recall two well known formulas:

pn + qn =
�n/2�∑
k=0

(−1)k n

n− k

(
n− k

k

)
(pq)k(p + q)n−2k, (1)

n∑
i=0

piqn−i =
�n/2�∑
k=0

(−1)k
(
n− k

k

)
(pq)k(p + q)n−2k. (2)

There are several applications of the above two formulas, see [6, Section 3], [13, p. 156]
and [19, p. 1068]. Based on the structures of matchings on path and cycle graphs, Brit-
tenham et al. [6] provided combinatorial interpretations for the alternating γ-expansions 
of 1 + qn and 

∑n
i=0 q

i.
As usual, we use Sn to denote the symmetric group of all permutations of [n] =

{1, 2, . . . , n}. Let π = π(1)π(2) · · ·π(n) ∈ Sn. In this paper, we always assume that 
π(0) = π(n + 1) = ∞ (except where explicitly stated). If i ∈ [n], then π(i) is called

• a descent if π(i) > π(i + 1);
• an ascent if π(i) < π(i + 1);
• a peak if π(i − 1) < π(i) > π(i + 1);
• a valley if π(i − 1) > π(i) < π(i + 1);
• a double descent if π(i − 1) > π(i) > π(i + 1);
• a double ascent if π(i − 1) < π(i) < π(i + 1).

Let des (π) (resp. asc (π), pk (π), val (π), ddes (π), dasc (π)) denote the number of de-
scents (resp. ascents, peaks, valleys, double descents, double ascents) of π. Moreover, for 
i ∈ [n − 1], we say that π(i) is a left peak if π(i − 1) < π(i) > π(i + 1), where we set 
π(0) = 0. Let lpk (π) be the number of left peaks of π.

The type A Eulerian polynomials are defined by

An(x) =
∑

π∈Sn

xdes (π).

Let γn,k = #{π ∈ Sn : pk (π) = k, ddes (π) = 0}. Foata-Schützenberger [14] found that

An(x) =
�(n−1)/2�∑

k=0

γn,kx
k(1 + x)n−1−2k for n � 1, (3)

which has been extensively studied in the past decades, see [7,11,38] and references 
therein. For example, using the theory of enriched P -partitions, Stembridge [37, Remark 
4.8] found that
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An(x) = 1
2n−1

�(n−1)/2�∑
k=0

4kP (n, k)xk(1 + x)n−1−2k, (4)

where P (n, k) is the number of permutations in Sn with k peaks.
Let ±[n] = [n] ∪ {−1, −2, . . . , −n}, and let Bn be the hyperoctahedral group of rank 

n. Elements of Bn are signed permutations of ±[n] with the property that σ(−i) = −σ(i)
for all i ∈ [n]. The type B Eulerian polynomials are defined by

Bn(x) =
∑
σ∈Bn

xdesB(σ),

where desB(σ) = #{i ∈ {0, 1, 2, . . . , n − 1} : σ(i) > σ(i + 1)} and σ(0) = 0 (see [5]
for details). Using the theory of enriched P -partitions, Petersen [28, Proposition 4.15]
obtained that

Bn(x) =
�n/2�∑
i=0

4iP̂ (n, i)xi(1 + x)n−2i, (5)

where P̂ (n, i) is the number of permutations in Sn with i left peaks.
For convenience, we collect the following recursions (see [26, p. 1] for instance):

An(x) = (nx + 1 − x)An−1(x) + x(1 − x) d
dxAn−1(x), A0(x) = 1;

Bn(x) = (2nx + 1 − x)Bn−1(x) + 2x(1 − x) d
dxBn−1(x), B0(x) = 1.

(6)

Let Δ be a simplicial complex of dimension n − 1. The f -vector of Δ is the sequence 
of integers (f−1, f0, f1, . . . , fn−1), where fi is the number of faces with i + 1 vertices 
in Δ. For example, f−1 = 1, corresponding to the empty face. The f -polynomial and 
h-polynomial of Δ are respectively defined as f(x) =

∑n
i=0 fi−1x

i, and

h(x) = (1 − x)nf
(

x

1 − x

)
=

n∑
i=0

fi−1x
i(1 − x)n−i =

n∑
i=0

hix
i.

The sequence (h0, h1, . . . , hn) is called the h-vector of Δ. It is well known that the h-
polynomial of a simple polytope is positive and symmetric [30]. In [16], Fomin-Zelevinsky 
defined the (generalized) Narayana numbers Nk(Φ) for an arbitrary root system Φ as 
the entries of the h-vector of the simplicial complex dual to the corresponding general-
ized associahedron. Let N(Φ, x) =

∑n
k=0 Nk(Φ)xk. For the classical Weyl groups, the 

generating polynomials for the Narayana numbers are given as follows (see [4, Section 7]):
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N(An, x) =
n∑

k=0

1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
xk,

N(Bn, x) =
n∑

k=0

(
n

k

)2

xk,

N(Dn, x) = N(Bn, x) − nxN(An−2, x),

where An = Sn+1 and Dn is the group of even-signed permutations in Bn. Narayana 
polynomials possess many of the same or similar properties as Eulerian polynomials 
(see [22,25,29]), including real-rootedness, γ-positivity and combinatorial interpretations.

1.2. The motivations and the organization of the paper

The Lucas polynomials {n} := {n}s,t are defined by {n} = s{n − 1} + t{n − 2}
with the initial conditions {0} = 0, {1} = 1. When s = 1 + q, t = −q, one has {n} =
1 + q + q2 + · · ·+ qn−1. Sagan-Tirrell [34] introduced a sequence of polynomials Pn(s, t)
by using the factorization of {n}: {n} = Πd|nPd(s, t). The polynomials Pn(s, t) are called 
Lucas atoms. They found that the coefficients of Pn(s, t) are just the absolute values of 
the γ-coefficients of the cyclotomic polynomials Φn(q) = Πζ(q − ζ), where the product 
is over all primitive nth roots of unity. Motivated by the work of Sagan-Tirrell [34], in 
Section 2, we will present Theorem 2.

Set D = d
dx . It is well known (see [20]) that

(xD)n 1
1 − x

=
∞∑
k=0

knxk = xAn(x)
(1 − x)n+1 .

When n � 1, using (6), we find that

(xD)n 1
1 − x2 = 2nx2An(x2)

(1 − x2)n+1 , (xD)n x

1 − x2 = xBn(x2)
(1 − x2)n+1 , (7)

which can be proved by induction. Therefore, using the fact that

(xD)n 1
1 − x

= (xD)n 1
1 − x2 + (xD)n x

1 − x2 ,

we get

(1 + x)n+1An(x) = Bn(x2) + 2nxAn(x2). (8)

The idea underlying this proof is very simple, but it offers a new insight. It is natural to 
explore similar expressions of Narayana polynomials of types A and B. Perhaps the most 
straightforward proof of (8) is by generating functions, see [23, Theorem 3] for instance.
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In Sections 3 and 4, we shall give several applications of Theorem 2. Moreover, inspired 
by (7) and (8), we will show the alternating γ-positivity and Hurwitz stability of several 
polynomials related to the Narayana polynomials of types A and B. To sum up, the 
main results of this paper are Theorems 2, 4, 10, 12 and 17.

2. Relationship between gamma-positivity and alternating gamma-positivity

Let f(x) =
∑n

i=0 fix
i. We define the operator Am : R[x] → R[x] by Am(f(x)) =

f(xm). The operator Am frequently appears in the study of field theory and number 
theory (see [18,26,33]). For example, there are two reduction formulas of cyclotomic 
polynomials (see [34, Theorem 5.1]): Φp(q) =

∑p−1
i=0 qi, Φpn(q) = Φn(qp)

Φn(q) , where n ∈ N

and p is a prime not dividing n.

Lemma 1. The product of two alternatingly γ-positive polynomials is alternatingly γ-
positive.

Proof. Let f(x) and g(x) be two alternatingly γ-positive polynomials. Suppose that

f(x) =
�n/2�∑
k=0

γk(−x)k(1 + x)n−2k, g(x) =
�m/2�∑
�=0

η�(−x)�(1 + x)m−2�,

where γk � 0 for 0 � k � �n/2� and η� � 0 for 0 � � � �m/2�. Then

f(x)g(x) =
�(n+m)/2�∑

i=0

i∑
k=0

γkηi−k(−x)i(1 + x)n+m−2i,

as desired. This completes the proof. �
We can now conclude the first main result of this paper.

Theorem 2. Let f(x) =
∑n

i=0 fix
i ∈ R[x]. Assume that f(x) =

∑�n/2�
i=0 γix

i(1 + x)n−2i.

(i) If f(x) is γ-positive, then A2m(f(x)) = f(x2m) is alternatingly γ-positive, where 
m ∈ N.

(ii) Set ηk =
∑�k/2�

i=0
(
n−2i
k−2i

)
2k−2iγi. Then we have

f(x2) =
n∑

k=0

ηk(−x)k(1 + x)2n−2k. (9)

Since x2 = (−x)2, consequently, f(x2) =
∑n

k=0 ηkx
k(1 − x)2n−2k. Moreover, the 

following two identities are equivalent:
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n∑
i=0

fix
2i =

n∑
k=0

ηk(−x)k(1 + x)2n−2k,
n∑

i=0
fix

2i(1 + x)2n−2i =
n∑

k=0

ηkx
k(1 + x)k.

(10)
(iii) Setting ξk =

∑�k/2�
i=0

(
n−2i
k−2i

)
γi, we have

n∑
k=0

ηkx
k =

�n/2�∑
i=0

γix
2i(1 + 2x)n−2i =

n∑
k=0

ξkx
k(1 + x)n−k. (11)

(iv) The modified γ-coefficient polynomial of f(x) has two equivalent expansions:

�n/2�∑
i=0

γix
2i =

n∑
k=0

ξk(−x)k(1 + x)n−k =
n∑

k=0

ξkx
k(1 − x)n−k. (12)

Proof. (i) Using (1), we get 1 + x2m =
∑m

j=0 a2m,j(−x)j(1 + x)2m−2j , where am,j =
m

m−j

(
m−j
j

)
. So we have

f(x2m) =
�n/2�∑
i=0

γix
2mi[1 + x2m]n−2i =

�n/2�∑
i=0

γix
2mi

⎧⎨⎩
m∑
j=0

a2m,j(−x)j(1 + x)2m−2j

⎫⎬⎭
n−2i

.

Using Lemma 1, we obtain

f(x2m) =
�n/2�∑
i=0

γix
2mi

m(n−2i)∑
�=0

bm,�(−x)�(1 + x)2mn−4mi−2�

=
�n/2�∑
i=0

m(n−2i)∑
�=0

γibm,�(−x)2mi+�(1 + x)2mn−2(2mi+�)

=
mn∑
k=0

( ∑
2mi+�=k

γibm,�

)
(−x)k(1 + x)2mn−2k,

where

bm,� =
∑

(i0,i1,i2,...,im)

(n− 2i)!
i0!i1!i2! · · · im!a

i0
2m,0a

i1
2m,1a

i2
2m,2 · · · aim2m,m,

and the summation is over all sequences of nonnegative integers (i0, i1, i2, . . . , im) such 
that 

∑m
j=1 jij = � and 

∑m
j=0 ij = n − 2i. Thus f(x2m) is alternatingly γ-positive.
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(ii) Note that

f(x2) =
�n/2�∑
i=0

γix
2i[(1 + x)2 − 2x]n−2i

=
�n/2�∑
i=0

n−2i∑
�=0

2�
(
n− 2i

�

)
γi(−x)2i+�(1 + x)2n−2(2i+�)

=
n∑

k=0

�k/2�∑
i=0

(
n− 2i
k − 2i

)
2k−2iγi(−x)k(1 + x)2n−2k,

and this proves (9). Clearly, one has 
∑n

i=0 fix
2i(1 +x)2n−2i = (1 +x)2n

∑n
i=0 fi

(
x

1+x

)2i
. 

Recall that f(x) =
∑�n/2�

i=0 γix
i(1 + x)n−2i. Substituting x by x2

(1+x)2 , we deduce that

(1 + x)2n
n∑

i=0
fi

(
x

1 + x

)2i

= (1 + x)2n
�n/2�∑
i=0

γi

(
x

1 + x

)2i(
1 + x2

(1 + x)2

)n−2i

=
�n/2�∑
i=0

γi(x(1 + x))2i(1 + 2x(1 + x))n−2i

=
�n/2�∑
i=0

n−2i∑
�=0

(
n− 2i

�

)
2�γi(x(1 + x))2i+�

=
n∑

k=0

⎧⎨⎩
�k/2�∑
i=0

(
n− 2i
k − 2i

)
2k−2iγi

⎫⎬⎭xk(1 + x)k.

Therefore, we obtain 
∑n

i=0 fix
2i(1 + x)2n−2i =

∑n
k=0 ηkx

k(1 + x)k. This proves (10).
(iii) On the one hand, we have

�n/2�∑
i=0

γix
2i(1 + 2x)n−2i =

�n/2�∑
i=0

n−2i∑
�=0

(
n− 2i

�

)
2�γix2i+� =

n∑
k=0

ηkx
k.

On the other hand, since 1 + 2x = 1 + x + x, we get

n∑
k=0

ηkx
k =

�n/2�∑
i=0

γix
2i(1 + x + x)n−2i

=
�n/2�∑
i=0

n−2i∑
�=0

(
n− 2i

�

)
γix

2i+�(1 + x)n−2i−�

=
n∑

ξkx
k(1 + x)n−k.
k=0
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This proves (11).
(iv) Making the substitution x

1+2x = y, it follows from (11) that

�n/2�∑
i=0

γiy
2i = (1 − 2y)n

n∑
k=0

ηk

(
y

1 − 2y

)k

= (1 − 2y)n
n∑

k=0

ξk

(
y

1 − 2y

)k ( 1 − y

1 − 2y

)n−k

=
n∑

k=0

ξky
k(1 − y)n−k.

Since y2 = (−y)2, we get 
∑�n/2�

i=0 γiy
2i =

∑n
k=0 ξk(−y)k(1 + y)n−k. This proves (12). �

Combining (4), (5) and (9), we get the following result.

Proposition 3. For any n � 1, we have

An(x2) =
n−1∑
k=0

1
2n−1−k

�k/2�∑
i=0

(
n− 1 − 2i
k − 2i

)
P (n, i)(−x)k(1 + x)2n−2−2k,

Bn(x2) =
n∑

k=0

2k
�k/2�∑
i=0

(
n− 2i
k − 2i

)
P̂ (n, i)(−x)k(1 + x)2n−2k.

If f(x) is γ-positive, then A2m+1(f(x)) = f(x2m+1) may be not alternatingly γ-
positive. For example, if f(x) = 1 + 4x + x2, then f(x) = (1 + x)2 + 2x and

f(x3) = (1 + x)6 − 6x(1 + x)4 + 9x2(1 + x)2 + 2x3.

Thus f(x) is γ-positive, but f(x3) is not alternatingly γ-positive.
In the next two sections, we shall give several applications of Theorem 2.

3. Narayana polynomials

3.1. Identities involving Narayana polynomials

Let Cn = 1
n+1

(2n
n

)
be the Catalan numbers. It is well known that Catalan numbers 

and the central binomial coefficients have the following expressions (see [8,12,31]):

Cn =
n−1∑
k=0

1
n

(
n

k + 1

)(
n

k

)
,

(
2n
n

)
=

n∑
k=0

(
n

k

)2

.

Using generating functions and Lagrange inversion formula, Coker [12] derived that
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n∑
k=0

1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
xk =

�n/2�∑
k=0

Ck

(
n

2k

)
xk(1 + x)n−2k,

n∑
k=0

1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
x2k(1 + x)2n−2k =

n∑
k=0

Ck+1

(
n

k

)
xk(1 + x)k. (13)

Chen-Yan-Yang [9] gave combinatorial interpretations of these two identities based on a 
bijection between Dyck paths and 2-Motzkin paths. In [32, p. 81], Riordan derived that

n∑
k=0

(
n

k

)2

xk =
�n/2�∑
k=0

(
n

2k

)(
2k
k

)
xk(1 + x)n−2k. (14)

Using weighted type B noncrossing partitions, Chen-Wang-Zhao [8] proved that

n∑
k=0

(
n

k

)2

x2k(1 + x)2n−2k =
n∑

k=0

(
n

k

)(
2k
k

)
xk(1 + x)k. (15)

Combining (10), (11), (13) and (15), we get the following result.

Theorem 4. For n � 0, one has

N(An, x
2) =

n∑
k=0

Ck+1

(
n

k

)
(−x)k(1 + x)2n−2k, (16)

N(Bn, x
2) =

n∑
k=0

(
n

k

)(
2k
k

)
(−x)k(1 + x)2n−2k. (17)

Thus N(An, x2) and N(Bn, x2) are both alternatingly γ-positive. Moreover,

n∑
k=0

Ck+1

(
n

k

)
xk =

�n/2�∑
k=0

Ck

(
n

2k

)
x2k(1 + 2x)n−2k,

n∑
k=0

(
n

k

)(
2k
k

)
xk =

�n/2�∑
k=0

(
n

2k

)(
2k
k

)
x2k(1 + 2x)n−2k.

Corollary 5. For any n � 2, one has

N(Dn, x
2) = (1 + x)2n +

n∑
i=1

((
n

i

)(
2i
i

)
− nCi−1

(
n− 2
i− 2

))
(−x)i(1 + x)2n−2i,

and thus N(Dn, x2) is alternatingly γ-positive.
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Proof. The alternating γ-expansion of N(Dn, x2) follows from the fact that

N(Dn, x
2) = N(Bn, x

2) − nx2N(An−2, x
2).

When i = 1, 
(
n
i

)(2i
i

)
− nCi−1

(
n−2
i−2

)
= 2n, and for any 2 � i � n, we have

(
n
i

)(2i
i

)
nCi−1

(
n−2
i−2

) = 2(n− 1)(2i− 1)
i(i− 1) = 2(n− 1)

(
1
i

+ 1
i− 1

)
� 0. �

3.2. The combinatorial proofs of (14), (15), (16), (17)

A Motzkin path is a lattice path starting at (0, 0), ending at (n, 0), and never going 
below the x-axis, with three possible steps (1, 1), (1, 0) and (1, −1). As usual, we use 
U, D and H to denote an up step (1, 1), a down step (1, −1) and a horizontal step (1, 0), 
respectively. For any c ∈ N, a c-Motzkin path is a Motzkin path with the horizontal 
steps can be colored by one of c colors. When c = 0, there are no horizontal steps and 
0-Motzkin paths reduce to Dyck paths. When c = 1, c-Motzkin paths reduce to the 
ordinary Motzkin paths. When c = 2, a horizontal step may be B or R, where B and R
stand for a blue step and a red step, respectively. When c = 3, a horizontal step may be 
B, R or G, where G denotes a green step. The length of a lattice path is defined to be 
the number of steps. The weight of a path is defined to be the product of the weights of 
its steps, and the weight of a set of paths equals the sum of weights of its paths.

Chen-Yan-Yang [9] discovered a fundamental result.

Lemma 6 ([9, Lemma 3.4]). Let CMn be the set of 2-Motzkin paths of length n. One has

1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
= #{P ∈ CMn : UB (P ) = k},

where UB(P ) denote the total number of U and B steps on P . Thus # CMn = Cn+1.

Combinatorial proof of the identity (16):
For any path in CMn, we assign the weight x2 to each U or B step and the weight 1 to 
any other step. By Lemma 6 (or refer back to [9, Lemma 3.4]), the left-hand side of (16)
equals the weight of CMn. It should be noted that the steps of U ’s and D’s must be 
matched on any path of CMn. We use S(k) to denote any subset of CMn with k up steps 
and the up and down steps are all located in given positions, see Fig. 1 for illustrations. 
Then the weight of S(k) equals x2k(1 +x2)n−2k, since a blue step has the weight x2 and 
a red step has the weight 1.

Let TMn denote the set of 3-Motzkin paths of length n. For any path in TMn, we 
assign the weight (−x) to each of the U , D, B and R steps, and the weight (1 + x)2
to each G step. We use Ŝ(k) to denote any subset of TMn with k up steps and the 
up and down steps are all located in given positions, see Fig. 2 for an example. Since 
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Fig. 1. The subset S(1) in CM3 with weight 3x2(1 + x2).

Fig. 2. The subset Ŝ(1) in TM3 with weight 3x2(1 + x2).

x2 = (−x)(−x), 1 + x2 = (1 + x)2 − x − x, the weight of Ŝ(k) equals

x2k ((1 + x)2 − x− x
)n−2k = x2k(1 + x2)n−2k,

which shows that Ŝ(k) and S(k) have the same weight. It remains to show that the 
weight TMn coincides with the right-hand side of (16). To construct a path of TMn with 
n − k G steps, we can insert the G steps into 2-Motzkin paths of CMk, where the U , D, 
B and R steps all have the same weight (−x). Note that there are 

(
n

n−k

)
=

(
n
k

)
ways to 

insert the G steps. By Lemma 6, # CMk = Ck+1. So the weight of TMn equals

n∑
k=0

(
n

k

)(
(1 + x)2

)n−k
Ck+1(−x)k =

n∑
k=0

Ck+1

(
n

k

)
(−x)k(1 + x)2n−2k.

This completes the proof. �
For any partition λ = (λ1, λ2, . . . , λr) � n, we draw a left-justified array with λi

cells in the i-th row. This array is called the Young diagram of λ. The partition that is 
represented by such a diagram is said to be the shape of the diagram. We will identify a 
partition λ with its Young diagram. We now introduce a new family of Young diagrams.
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Fig. 3. Four cases of coloring of columns.

Definition 7. Let c be a fixed positive integer. A c-colored 2 × n Young diagram is a 
Young diagram of shape (n, n) such that each cell may be colored by one of the c colors.

When c = 1, we get an ordinary 2 × n Young diagram. When c = 2, a cell may be 
colored by black or white. As illustrated in Fig. 3, for any 2-colored 2 ×n Young diagram, 
we use U, D, B and N to denote a column with a black cell on the top and a white cell 
at the bottom, a column with a white cell on the top and a black cell at the bottom, 
a column with two black cells and a column with two white cells, respectively. When 
c = 3, a cell may be colored by black, white or green. The weight of a Young diagram 
is defined to be the product of the weights of its cells, and the weight of a set of Young 
diagrams equals the sum of the weights of its Young diagrams.

Definition 8. We use CYn to denote the subset of 2-colored 2 × n Young diagrams such 
that the top row and bottom row have the same number of black cells.

Since the top row and bottom row have the same number of black cells, we see that 
the columns of U ’s and D’s must be matched on any Young diagram in CYn. It should 
be noted that Riordan [32, p. 81] proved the identity (14) by combining inverse relations 
and the generating function for Legendre polynomials. We are now ready to give an 
original proof of it.

Combinatorial proof of the identity (14):
For any Young diagram in CYn, we assign the weight x 1

2 to each black cell and the 
weight 1 to each white cell. Consider a subset of CYn consisting of all Young diagrams 
with exactly 2k black cells, i.e., the top row and bottom row both have exactly k black 
cells. Since x = x

1
2x

1
2 and there are 

(
n
k

)
ways to choose black cells from each row, the 

weight of this subset equals 
(
n
k

)2
xk. Thus the left-hand side of (14) equals the weight of 

CYn. In particular, one has

# CYn =
(

2n
n

)
. (18)

As illustrated in Fig. 3, each column of Young diagrams in CYn may be colored with 
the same color or different colors. Consider a subset of CYn consisting of all Young 
diagrams having exactly k U ’s. Since the columns of U ’s and D’s must be matched, 
there are 

(
n
2k
)(2k

k

)
ways to locate all the U ’s and D’s. The weight of the other columns 

is given by (1 + x)n−2k. Therefore, the weight of this subset equals
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(
n

2k

)(
2k
k

)
xk(1 + x)n−2k,

which is the summand of the right-hand side of (14). This completes the proof. �
Definition 9. Let TYn be the subset of 3-colored 2 × n Young diagram such that

(i) The top row and bottom row have the same number of black cells;
(ii) There are five cases of coloring of columns, in addition to previous U, D, B and N , 

and a column may be two green cells and we use G to denote it.

Combinatorial proof of the identity (15):
For any Young diagram in CYn, we first assign the weight x to each black cell and the 
weight 1 + x to each white cell. Note that there are 

(
n
k

)
ways to choose black cells in 

each row. Then the weight of CYn equals

n∑
k=0

((
n

k

)
xk(1 + x)n−k

)2

=
n∑

k=0

(
n

k

)2

x2k(1 + x)2n−2k.

Let E(k) be any subset of CYn with k U ’s, k D’s and the positions of the U ’s and D’s 
are fixed. Then E(k) has the weight

(x(1 + x))2k(x2 + (1 + x)2)n−2k.

For any path in TYn, we assign the weight x(1 + x) to each of the U , D, B and N
columns, and the weight 1 to each G column. Let Ê(k) be any subset of TYnwith k U ’s, 
k D’s and the positions of the U ’s and D’s are fixed. The weight of Ê(k) equals

(x(1 + x))2k(1 + x(1 + x) + x(1 + x))n−2k.

Hence E(k) and Ê(k) have the same weight. For any Young diagram in TYn with n − k

G columns, the remaining k columns form a new Young diagram in CYk. It follows 
from (18) that the weight of the subset of Young diagrams in TYn with n −k G’s equals(

n

n− k

)
1n−k

(
2k
k

)
(x(1 + x))k =

(
n

k

)(
2k
k

)
xk(1 + x)k,

which is the summand of the right-hand side of (15). This completes the proof. �
Combinatorial proof of the identity (17):
For any Young diagram in CYn, we reassign the weight x to each black cell and the 
weight 1 to each white cell. Consider the subset of CYn consisting of all Young diagrams 
with exactly 2k black cells. The weight of this subset equals 

(
n
k

)2
x2k. In the same way 

as the combinatorial proof of (14), the left-hand side of (17) equals the weight of CYn. 
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In order to distinguish, we now use H(k) to denote any subset of CYn with k U ’s, k
D’s and the U ’s and D’s are all located in given positions. The weight of H(k) equals 
x2k(1 + x2)n−2k.

For any Young diagram in TYn, we assign the weight (−x) to each of the U , D, B
and N columns, and the weight (1 + x)2 to each G column. Similarly, we use Ĥ(k) to 
denote any subset of TYn with k U ’s, k D’s and the U ’s and D’s are all located in given 
positions. Since x2 = (−x)(−x) and 1 +x2 = (1 +x)2 −x −x, the weight of Ĥ(k) equals

x2k ((1 + x)2 − x− x
)n−2k = x2k(1 + x2)n−2k.

Hence Ĥ(k) and H(k) have the same weight. It remains to show that the weight TYn

coincides with the right-hand side of (17). For any Young diagram in TYn with n − k

G columns, the remaining k columns form a new Young diagram in CYk. It follows 
from (18) that the weight of the subset of Young diagrams in TYn with n −k G’s equals(

n

n− k

)(
(1 + x)2

)n−k
(

2k
k

)
(−x)k =

(
n

k

)(
2k
k

)
(−x)k(1 + x)2n−2k,

which is the summand of the right-hand side of (17). This completes the proof. �
3.3. Dual formulas of (7) and (8)

As pointed out by Petersen [29, Preface], the Narayana numbers are close cousins of 
the Eulerian numbers. We can now present the connections between differential operators 
and Narayana polynomials, which may be seen as dual formulas of (7) and (8).

Theorem 10. For n � 1, we have(
x2

1 − x2D

)n 1
1 − x2 = (n + 1)!xn+2N(An−1, x

2)
(1 − x2)2n+1 , (19)(

x2

1 − x2D

)n
x

1 − x2 = n!xn+1N(Bn, x
2)

(1 − x2)2n+1 . (20)

Therefore, we have(
x2

1 − x2D

)n 1
1 − x

=
n!xn+1 (N(Bn, x

2) + (n + 1)xN(An−1, x
2)
)

(1 − x2)2n+1 . (21)

Proof. Note that

x2

1 − x2D
1

1 − x2 = 2x3

(1 − x2)3 ,
(

x2

1 − x2D

)2 1
1 − x2 = 3!x4(1 + x2)

(1 − x2)5 ,

x2

2D
x

2 = x2(1 + x2)
2 3 ,

(
x2

2D

)2
x

2 = 2x3(1 + 4x2 + x4)
2 5 .
1 − x 1 − x (1 − x ) 1 − x 1 − x (1 − x )
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Thus the identities hold for n = 1, 2.
Note that

xN(An−1, x) = x
n−1∑
i=0

1
n

(
n

i + 1

)(
n

i

)
xi =

n∑
k=1

1
n

(
n

k

)(
n

k − 1

)
xk.

To prove the general formulas, we introduce

N̂(n, k) = (n + 1)! 1
n

(
n

k

)(
n

k − 1

)
, M̂(n, k) = n!

(
n

k

)2

.

Following [25, Lemma 7], the numbers M̂(n, k) and N̂(n, k) satisfy the recursions:

M̂(n + 1, k) = (n + 1 + 2k)M̂(n, k) + (3n + 3 − 2k)M̂(n, k − 1),

N̂(n + 1, k) = (n + 2k)N̂(n, k) + (3n + 4 − 2k)N̂(n, k − 1).

We now perform the inductive step. Assume that (19) and (20) hold for n = m. Then 
when n = m + 1, we obtain

(
x2

1 − x2D

) ∑m
k=1 N̂(m, k)x2k+m

(1 − x2)2m+1

=
∑m

k=1(2k + m)N̂(m, k)x2k+m+1(1 − x2) + 2(2m + 1)
∑m

k=1 N̂(m, k)x2k+m+3

(1 − x2)2m+3 ,(
x2

1 − x2D

) ∑m
k=0 M̂(m, k)x2k+m+1

(1 − x2)2m+1

=
∑m

k=0(2k + m + 1)M̂(m, k)x2k+m+2(1 − x2) + 2(2m + 1)
∑m

k=0 M̂(m, k)x2k+m+4

(1 − x2)2m+3 .

Combining these two expressions with the recursions of M̂(n, k) and N̂(n, k), we get

(
x2

1 − x2D

)m+1 1
1 − x2 =

xm+1 ∑m+1
k=1 N̂(m + 1, k)x2k

(1 − x2)2m+3 ,

(
x2

1 − x2D

)m+1
x

1 − x2 =
xm+2 ∑m+1

k=0 M̂(m + 1, k)x2k

(1 − x2)2m+3 ,

as desired. Since(
x2

1 − x2D

)n 1
1 − x

=
(

x2

1 − x2D

)n 1
1 − x2 +

(
x2

1 − x2D

)n
x

1 − x2 ,

the proof of (21) follows immediately. This completes the proof. �
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Example 11. When n = 2 and n = 3, the polynomials N(Bn, x2) + (n + 1)xN(An−1, x2)
are respectively given as follows:

1 + 3x + 4x2 + 3x3 + x4 = (1 + x)2(1 + x + x2),

1 + 4x + 9x2 + 12x3 + 9x4 + 4x5 + x6 = (1 + x)2(1 + 2x + 4x2 + 2x3 + x4).

We can see that the above two polynomials are both symmetric. Furthermore, if we 
divide these polynomials by (1 + x)2, the remainders are also symmetric.

Motivated by (8), we further study N(Bn, x2) + (n + 1)xN(An−1, x2) in the next 
subsection.

3.4. Hurwitz stability and alternating gamma-positivity

Let RZ denote the set of real polynomials with only real zeros. Furthermore, denote by 
RZ(I) the set of such polynomials all of whose zeros are in the interval I. Following [18], 
we say that a polynomial p(x) ∈ R[x] is standard if its leading coefficient is positive. 
Suppose that p(x), q(x) ∈ RZ, and the zeros of p(x) are ξ1 � · · · � ξn, and that those of 
q(x) are θ1 � · · · � θm. We say that p(x) interlaces q(x) if deg q(x) = 1 + deg p(x) and 
the zeros of p(x) and q(x) satisfy

θ1 � ξ1 � θ2 � ξ2 � · · · � ξn � θn+1.

We say that p(x) alternates left of q(x) if deg p(x) = deg q(x) and their zeros satisfy

ξ1 � θ1 � ξ2 � θ2 � · · · � ξn � θn.

The reader is referred to [22] for the method of interlacing zeros.
Let C[x] denote the set of all polynomials in x with complex coefficients. A polynomial 

p(x) ∈ C[x] is Hurwitz stable if every zero of p(x) is in the open left half plane, and p(x)
is weakly Hurwitz stable if every zero of p(x) is in the closed left half of the complex 
plane, see [2] for details. The classical Hermite-Biehler theorem is given as follows.

Hermite-Biehler Theorem ([18, Theorem 3]). Let f(x) = fE(x2) +xfO(x2) be a standard 
polynomial with real coefficients. Then f(x) is weakly Hurwitz stable if and only if both 
fE(x) and fO(x) are standard, have only nonpositive zeros, and fO(x) interlaces or 
alternates left of fE(x). Moreover, f(x) is Hurwitz stable if and only if f(x) is weakly 
Hurwitz stable, f(0) 	= 0 and gcd(fE(x), fO(x)) = 1.

We can now present the following result.

Theorem 12. For any n � 1, the polynomial N(Bn, x2) + (n + 1)xN(An−1, x2) is alter-
natingly γ-positive, Hurwitz stable, and can be divided by (1 + x)2.
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Proof. Immediate from Theorem 4, we then get

N(Bn, x
2) + (n + 1)xN(An−1, x

2)

= (1 + x)2n +
n∑

k=1

((
n

k

)(
2k
k

)
− (n + 1)Ck

(
n− 1
k − 1

))
(−x)k(1 + x)2n−2k.

(22)

For 1 � k � n, we can see that

(
n
k

)(2k
k

)
(n + 1)Ck

(
n−1
k−1

) =
n
k

(
n−1
k−1

)(2k
k

)
n+1
k+1

(2k
k

)(
n−1
k−1

) = n(k + 1)
(n + 1)k � 1,

and so each term in the expansion (22) contains (1 + x)2 as a factor. When k = n,(
n

k

)(
2k
k

)
= (n + 1)Ck

(
n− 1
k − 1

)
,

which implies that the k = n term vanishes in (22). So N(Bn, x2) +(n +1)xN(An−1, x2)
is alternatingly γ-positive and can be divided by (1 + x)2.

Recall that

N(An, x) =
n∑

k=0

1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
xk, N(Bn, x) =

n∑
k=0

(
n

k

)2

xk.

We obtain

d
dx (xN(An, x)) =

n∑
k=0

k + 1
n + 1

(
n + 1
k + 1

)(
n + 1
k

)
xk

=
n∑

k=0

(
n

k

)(
n + 1
k

)
xk

=
n∑

k=0

(
n

k

)2

xk +
n∑

k=1

(
n

k

)(
n

k − 1

)
xk

= N(Bn, x) + nxN(An−1, x),

d
dx (N(Bn, x) + nxN(An−1, x)) =

n∑
k=1

(
n

k

)(
n + 1
k

)
kxk−1

= n(n + 1)N(An−1, x). (23)

According to [4, Corollary 7.2], we have N(An, x) ∈ RZ(−∞, 0) and N(Bn, x) ∈
RZ(−∞, 0). By Rolle’s theorem, one can immediately get that d

dx (xN(An, x)) ∈
RZ(−∞, 0). Since
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d
dx (xN(An, x)) = N(Bn, x) + nxN(An−1, x),

so we have N(Bn, x) + nxN(An−1, x) ∈ RZ(−∞, 0). Similarly, by Rolle’s theorem, it 
follows from (23) that the polynomial N(An−1, x) interlaces N(Bn, x) + nxN(An−1, x).

Suppose that the zeros of N(An−1, x) are rn−1 < rn−2 < · · · < r1, and that 
those of N(Bn, x) are sn < sn−1 < · · · < s1. Since N(An−1, x) interlaces N(Bn, x) +
nxN(An−1, x) and

sgn (N(Bn, ri) + nriN(An−1, ri)) = sgnN(Bn, ri),

we can see that the sign of N(Bn, ri) is (−1)i for each i ∈ [n − 1]. Note that N(Bn, x)
is monic, N(Bn, 0) = 1 and sgnN(Bn, −∞) = (−1)n. Hence N(Bn, x) has precisely 
one zero in each of the n intervals (−∞, rn−1), (rn−1, rn−2), . . . , (r2, r1), (r1, 0). Thus 
N(An−1, x) interlaces N(Bn, x). Using the Hermite-Biehler theorem, we conclude that 
N(Bn, x2) + (n + 1)xN(An−1, x2) is Hurwitz stable. This completes the proof. �

Inductively define the polynomials Ln(x) and L̂n(x) by

(
x2

1 − x2D

)n 1
1 − x

= n!xn+1(1 + x)2Ln(x)
(1 − x2)2n+1 = n!xn+1(1 + x)L̂n(x)

(1 − x2)2n+1 .

By induction, it is routine to deduce the following result.

Proposition 13. For n � 1, we have

nLn(x) = (n + 2x + (3n− 4)x2)Ln−1(x) + x(1 − x2) d
dxLn−1(x),

nL̂n(x) = (n + x + (3n− 3)x2)L̂n−1(x) + x(1 − x2) d
dxL̂n−1(x),

with the initial conditions L1(x) = 1 and L̂0(x) = 1.

By (21), we have (1 + x)2Ln(x) = N(Bn, x2) + (n + 1)xN(An−1, x2) for n � 1. 
Therefore, by Theorem 12, we immediately get the following result.

Corollary 14. Both Ln(x) and L̂n(x) are alternatingly γ-positive and Hurwitz stable.

From Proposition 13, we note that nLn(1) = (4n − 2)Ln−1(1). Thus

2Ln(1) = L̂n(1) =
(

2n
n

)
.

Below are the polynomials Ln(x) for n � 5:
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L1(x) = 1, L2(x) = 1 + x + x2, L3(x) = 1 + 2x + 4x2 + 2x3 + x4,

L4(x) = 1 + 3x + 9x2 + 9x3 + 9x4 + 3x5 + x6,

L5(x) = 1 + 4x + 16x2 + 24x3 + 36x4 + 24x5 + 16x6 + 4x7 + x8.

It should be noted that the sequences {L(n, k)}2n−2
k=0 and {L̂(n, k)}2n−1

k=0 appear as 
A088855 in [36], which count symmetric Dyck paths by their number of peaks. These se-
quences have been discussed recently by Cho, Huh and Sohn [10, Lemma 3.8]. Explicitly, 
we have

L(n, k) =
(
n− 1

k

2 �

)(
n− 1
�k

2 �

)
, L̂(n, k) =

(
n


k
2 �

)(
n− 1
�k

2 �

)
which can be directly verified by using Proposition 13.

4. Identities involving Eulerian polynomials

In [3], Brändén introduced the following modified Foata-Strehl action (MFS -action for 
short), which can be used to show the γ-positivity of various enumerative polynomials.

MFS-action ([3]). Given π ∈ Sn and x = π(i).

(i) If x is a double descent, then let ϕx(π) be obtained by deleting x and then inserting 
x between π(j) and π(j + 1), where j is the smallest index satisfying j > i and 
π(j) < x < π(j + 1);

(ii) If x is a double ascent, then let ϕx(π) be obtained by deleting x and then inserting 
x between π(j) and π(j + 1), where j is the largest index satisfying j < i and 
π(j) > x > π(j + 1);

(iii) If x is a peak or a valley, then let ϕx(π) = π.

For each x ∈ [n], the MFS-action is defined by

ϕ′
x(π) =

{
ϕx(π), if x is a double ascent or double descent;
π, if x is a valley or a peak.

The reader is referred to [3, Fig. 1] for an visualized instance of the modified Foata–
Strehl action. It is clear that ϕ′

x’s are involutions and that they commute. For any 
S ⊆ [n], the function ϕ′

S : Sn → Sn is defined by

ϕ′
S(π) =

∏
x∈S

ϕ′
x(π).

Therefore, the group Zn
2 acts on Sn via the functions ϕ′

S , where S ⊆ [n].
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Let Orb(π) = {g(π) : g ∈ Zn
2} be the orbit of π under the MFS -action. Brändén 

noted that the following result follows from the work in [15], and he proved it by using 
the MFS -action.

Proposition 15 ([3, Theorem 3.1]). For any π ∈ Sn, one has∑
σ∈Orb(π)

xdes (σ) = xdes (π̂)(1 + x)n−1−2des (π̂) = xpk (π)(1 + x)n−1−2pk (π), (24)

where π̂ to denote the unique element in Orb(π) with no double descents.

An immediate consequence of (24) is the following result.

Proposition 16. For any π ∈ Sn, one has

∑
σ∈Orb(π)

x2des (σ) =
n−1−2pk (π)∑

i=0

(
n− 1 − 2pk (π)

i

)
2i(−x)2pk (π)+i(1 + x)2n−2−2(2pk (π)+i).

The peak polynomials and left peak polynomials are respectively defined by

Pn(x) =
∑

π∈Sn

xpk (π) =
�(n−1)/2�∑

k=0

P (n, k)xk, P̂n(x) =
∑

π∈Sn

xlpk (π) =
�n/2�∑
k=0

P̂ (n, k)xk.

They satisfy the following recurrence relations

Pn+1(x) = (nx− x + 2)Pn(x) + 2x(1 − x) d
dxPn(x), (25)

P̂n+1(x) = (nx + 1)P̂n(x) + 2x(1 − x) d
dxP̂n(x), (26)

with the initial values P1(x) = P̂1(x) = 1, P2(x) = 2 and P̂2(x) = 1 + x. These 
polynomials arise often in algebra, combinatorics and other branches of mathematics, 
see [20,23,37,38].

By Theorem 2, we can now conclude the following result.

Theorem 17.

(i) For n � 1, both An(x2) and Bn(x2) are alternatingly γ-positive. More precisely, 
there exist nonnegative integers a(n, k) and b(n, k) such that

An(x2) =
n−1∑

a(n, k)(−x)k(1 +x)2n−2−2k, Bn(x2) =
n∑

b(n, k)(−x)k(1 +x)2n−2k.

k=0 k=0
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(ii) For n � 1, we have

(1 + x)2n−2An

(
x2

(1 + x)2

)
=

n−1∑
k=0

a(n, k)xk(1 + x)k,

(1 + x)2nBn

(
x2

(1 + x)2

)
=

n∑
k=0

b(n, k)xk(1 + x)k.

(iii) Setting an(x) =
∑n−1

k=0 a(n, k)xk and bn(x) =
∑n

k=0 b(n, k)xk, then we get

an(x) = 1
2n−1

�(n−1)/2�∑
k=0

4kP (n, k)x2k(1 + 2x)n−1−2k

=
(

1 + 2x
2

)n−1

Pn

(
4x2

(1 + 2x)2

)
,

bn(x) =
�n/2�∑
k=0

4kP̂ (n, k)x2k(1 + 2x)n−2k = (1 + 2x)nP̂n

(
4x2

(1 + 2x)2

)
.

(iv) There exist nonnegative integers α(n, i) and β(n, i) such that

an(x) =
n−1∑
i=0

α(n, i)xi(1 + x)n−1−i, bn(x) =
n∑

i=0
β(n, i)xi(1 + x)n−i,

1
2n−1

�(n−1)/2�∑
k=0

4kP (n, k)x2k =
n−1∑
i=0

α(n, i)(−x)i(1 + x)n−1−i, (27)

�n/2�∑
k=0

4kP̂ (n, k)x2k =
n∑

i=0
β(n, i)(−x)i(1 + x)n−i. (28)

From Proposition 3, we see that

a(n, k) = 1
2n−1−k

�k/2�∑
i=0

(
n− 1 − 2i
k − 2i

)
P (n, i), b(n, k) = 2k

�k/2�∑
i=0

(
n− 2i
k − 2i

)
P̂ (n, i).

For n � 1, we now define

αn(x) =
n−1∑
i=0

α(n, i)xi, βn(x) =
n∑

i=0
β(n, i)xi.

The reader is referred to Table 1 for the initial values of an(x), bn(x), αn(x) and βn(x).
Setting y = −x in (27) and (28), we get the following corollary.
1+x



S.-M. Ma et al. / Advances in Applied Mathematics 154 (2024) 102656 23
Corollary 18. For n � 1, one has

αn(x) = 1
2n−1

�(n−1)/2�∑
k=0

4kP (n, k)x2k(1 + x)n−1−2k =
(

1 + x

2

)n−1

Pn

(
4x2

(1 + x)2

)
,

(29)

βn(x) =
�n/2�∑
k=0

4kP̂ (n, k)x2k(1 + x)n−2k = (1 + x)nP̂n

(
4x2

(1 + x)2

)
.

Corollary 19. The polynomials an(x), bn(x), αn(x) and βn(x) satisfy the recursions

an+1(x) = (1 + 3x− nx)an(x) + 1
2x(1 + 4x) d

dxan(x), (30)

bn+1(x) = (1 + 2x− 2nx)bn(x) + x(1 + 4x) d
dxbn(x), (31)

αn+1(x) =
(

1 + x + 1
2(n− 1)x(3x− 1)

)
αn(x) + 1

2x(1 − x)(1 + 3x) d
dxαn(x), (32)

βn+1(x) = (1 + x− nx + 3nx2)βn(x) + x(1 − x)(1 + 3x) d
dxβn(x), (33)

with the initial conditions a1(x) = α1(x) = b0(x) = β0(x) = 1.

Proof. Differentiation of

Pn

((
2x

1 + 2x

)2
)

=
(

2
1 + 2x

)n−1

an(x)

gives

d
dxPn

((
2x

1 + 2x

)2
)

=
2n−4(1 + 2x) d

dxan(x) − 2n−3(n− 1)an(x)
x(1 + 2x)n−3 .

Substituting these two expressions into (25), we get (30). Differentiation of

P̂n

((
2x

1 + 2x

)2
)

= bn(x)
(1 + 2x)n

gives

d
dxP̂n

((
2x

1 + 2x

)2
)

=
(1 + 2x) d

dxbn(x) − 2nbn(x)
8x(1 + 2x)n−2 .

Substituting the above two expressions into (26) and simplifying, we obtain (31).
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Differentiation of

Pn

((
2x

1 + x

)2
)

=
(

2
1 + x

)n−1

αn(x)

gives

d
dxPn

((
2x

1 + x

)2
)

=
2n−4(1 + x) d

dxαn(x) − 2n−4(n− 1)αn(x)
x(1 + x)n−3 .

Substituting these two expressions into (25), we get (32). Differentiation of

P̂n

((
2x

1 + x

)2
)

= βn(x)
(1 + x)n

gives

d
dxP̂n

((
2x

1 + x

)2
)

=
(1 + x) d

dxβn(x) − nβn(x)
8x(1 + x)n−2 .

Substituting the above two expressions into (26) and simplifying, we arrive at (33). �
From (32), we see that αn(1) = n!. Set α̂0(x) = 1 and α̂n(x) = xn−1αn

( 1
x

)
for n � 1. 

Let γn,k = #{π ∈ Sn : pk (π) = k, ddes (π) = 0}. Combining (3), (4) and (29), we get

α̂n(x) =
(

1 + x

2

)n−1

Pn

((
2

1 + x

)2
)

= 1
2n−1

�(n−1)/2�∑
k=0

4kP (n, k)(1 + x)n−1−2k

=
�(n−1)/2�∑

k=0

γn,k(1 + x)n−1−2k.

By using the MFS -action defined by (4), one can immediately get that α̂n(x) =∑
π∈Sn

xdasc (π), since each double ascent of π can be transformed to a double descent. It 
is well known [36, A008303] that the exponential generating function of peak polynomials 
is given as follows:

P (x; z) :=
∞∑

n=1
Pn(x)z

n

n! = sinh(z
√

1 − x)√
1 − x cosh(z

√
1 − x) − sinh(z

√
1 − x)

. (34)

Note that
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Table 1
The initial values of an(x), bn(x), αn(x) and βn(x).

a1(x) = 1 a2(x) = 1 + 2x a3(x) = 1 + 4x + 6x2

b1(x) = 1 + 2x b2(x) = 1 + 4x + 8x2 b3(x) = 1 + 6x + 32x2 + 48x3

α1(x) = 1 α2(x) = 1 + x α3(x) = 1 + 2x + 3x2

β1(x) = 1 + x β2(x) = 1 + 2x + 5x2 β3(x) = 1 + 3x + 23x2 + 21x3

α̂(x; z) :=
∞∑

n=0
α̂n(x)z

n

n! = 1 + 2
1 + x

P

((
2

1 + x

)2

; (1 + x)z
2

)
. (35)

Set u =
√

(x + 3)(x− 1). Combining (34) and (35), it is routine to check that

α̂(x; z) =
u cosh

( 1
2uz

)
+ (1 − x) sinh

( 1
2uz

)
u cosh

( 1
2uz

)
− (1 + x) sinh

( 1
2uz

) ,
which was also recently studied by Zhuang [38, Theorem 13]. In conclusion, we can now 
restate Corollary 18 in a succinct form as follows.

Proposition 20. For n � 1, we have

αn(x) =
∑

π∈Sn

xn−1−dasc (π) =
∑

π∈Sn

xpk (π)+des (π),

βn(x) =
∑

π∈Sn

(2x)2lpk (π)(1 + x)n−2lpk (π).
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